gravity9 Case Study

PRODUCT BUILD | QA | UX | APPLICATION MODERNIZATION

Major Property
Rental Provider

How-We'Built an Al Chatbot That Transforms 10,000+
Daily Maintenance’Requests into.Clear, Actionable Jobs in Seconds

Our client is one of the largest single-family rental
housing providers in the United States. As a publicly

inconsistent.

traded company operating thousands of homes

across more than twenty states, they manage a vast
volume of day-to-day resident service requests.

gravity9 has been a trusted partner for many years.
We previously helped modernize their field operations
with a mobile app used by technicians to record and

form, often unclear, sometimes in Spanish, always

The client needed a way to turn this raw, messy
natural language into clean, structured maintenance

data. They asked us to design an Al chatbot that

manage property issues. As the platform grew, the
client faced a recurring operational problem: residents
submit maintenance requests in completely free-text

Utilized Technology Stack

Cloud: Microsoft Azure

Frontend Framework: React
Backend Framework: ASPNET Core
Al Framework: Semantic Kernel
LLM Model: GPT-5 Mini

Vector Database: Microsoft CosmosDB

gravity9.com

Review of Challenges

The request are typically submitted

in natural language, often without
formal structure, leading to significant
operational challenges. Equally, they
ranged from rambling paragraphs to
three word messages. Some used slang,
some mixed languages, others left out
essential details.

The client's operations team had to read,
interpret, translate, classify, prioritize,
and validate every single message
manually; thousands per day. Even small
inconsistencies resulted in duplicated
tickets, incorrect categorization, or
reduced response times.

The new system needed to:
« read what a resident writes
« ask follow-up questions
« translate when required

+ identify one or more maintenance
issues

» match them to the client’s official
classification

+ detect duplicates

could understand residents the way a human would,
and then convert every request into a precise,
standardized work order ready for scheduling.

+ package everything into a structured,
consistent request. Whilst ensuring it
happened in real time.

Our Solution

We built an Al chatbot that acts like

an expert maintenance coordinator.
Residents can describe a problem in their
own words. The chatbot reads it, clarifies
it, translates it if needs be, and classifies
it using the client’s approved condition
and asset definitions.

Every decision the chatbot makes is
grounded in the client’s controlled
database meaning it doesn't invent new
categories or guess outside defined
rules. It simply interprets human
language and maps it to the company’s
world.

The result: residents speak naturally,
and the system delivers clean, accurate
maintenance requests.

Our Approach

Because Al ecosystems change almost
monthly, we followed a careful, structured
path.

We began with a proof of concept

using GPT-4.1 Mini to see if the model
could handle translation, classification,
summarization, and follow-up
questioning using real resident examples.
Once GPT-5 Mini was released, we
upgraded to increase speed and
accuracy which is critical for chat-based
workflows.

Next, we evaluated two leading agent
frameworks: LangChain and Semantic
Kernel. Semantic Kernel aligned better
with the client’s .NET-based ecosystem,
so we selected it, while also preparing for
future migration to the Microsoft Agent
Framework once it stabilizes.

We explored retrieval-augmented
generation (RAG) versus prompt-

only grounding to determine which
method produced the most accurate
classifications. These experiments
helped us optimize both the Al behavior
and the database design.

After validating the approach, we entered
a full compliance and security review.
The client operates at national scale,
handling sensitive resident data, so we
implemented strong controls through
Azure Al Foundry including Managed
Identity, Private Endpoints, Content
Safety, and role-based access security.

Once approved, we transformed the
proof of concept into a production ready
platform. We built a responsive chat
interface, restructured the POC into

micro-services, added duplicate detection
Al, instrumented telemetry using Grafana,
and tested extensively with both QA
teams and real resident data.

The rollout occurred gradually using
LaunchDarkly feature flags so we could
monitor performance and adjust behavior
before expanding system wide.

Subsequent Outcomes

The finished solution is an Al-driven
conversational assistant that takes
unstructured human language and turns
it into clean, consistent maintenance
requests.

Residents now enjoy a simple dialogue-
based experience where the Al asks only
the questions needed to understand their
problem. They no longer need to decode
the company’s internal categories; the
system handles it entirely.

Behind the scenes, maintenance
teams receive structured, accurate,
duplicate checked requests with clear
summaries, asset matches, and priority
classifications. This improves triage
speed, scheduling efficiency, technician
preparedness, and overall service
consistency.

The chatbot effectively bridges the
gap between how people talk and how
operations run.

Client Feedback

The client praised the clarity and
consistency the chatbot brings to their
maintenance workflows. Early stage

reviewers described it as “a major step
forward for resident experience and
operational accuracy.”

They also highlighted the strength of the
collaboration and the disciplined way
complex Al behaviors were simplified into
predictable, business-ready outcomes.

“10,000+ daily
maintenance requests
transformed from
free text into clean,
actionable jobs, in
seconds.”

WE’RE

BUILDING
BETTER
DIGITAL

PRODUCTS

